Final exam
Electronics \& Signal processing

11-04-2017
Prof. Dr. G. Palasantzas

Grade of written exam:
Mark is cummulative points scored for all problems
Total maximum score : 10

Problem 1 (1.5 points)

(a: 1 point) Calculate the potential at point D
(b: $\mathbf{1 / 2}$ points) Calculate the current through each resistance $\mathrm{Ri}, \mathrm{i}=\{1, \mathrm{~N}\}$

Solution-Problem1

$$
\widetilde{R}=R_{1}\left\|R_{2}\right\| \ldots R_{N}, \frac{1}{\widetilde{R}}=\sum_{i=1}^{N} \frac{L}{R_{i}}
$$

$$
\begin{equation*}
\tilde{I}=I+\frac{V_{D}-V_{s}}{R d} \tag{1}
\end{equation*}
$$

$\tilde{R}+R_{s}$ are porallel to Rd Thus we have:

$$
\begin{equation*}
V_{S}=V_{D}=I \cdot R_{d} \|\left(\tilde{R}+R_{S}\right)(2) \tag{3}
\end{equation*}
$$

(1) $\mathcal{L}(2) \Rightarrow \widetilde{I}=I\left\{1-\frac{R d \|\left(\tilde{R}+R_{s}\right)}{R d}\right\}$

$$
\begin{aligned}
& V_{D}=-\tilde{I} \cdot \tilde{R}=p \quad \underbrace{V_{D}=-I\left\{\tilde{R}-\frac{\tilde{R}}{R_{d}} *\left[R_{d} \|\left(\tilde{R}+R_{i}\right)\right]\right\}}_{(0 c)}] \\
& I_{i}=-\frac{V_{D}}{R_{i}}=P I_{i}=+\frac{I}{R_{i}}\left\{\tilde{R}-\frac{\tilde{R}}{R_{d}} *\left[R_{d} \|\left(\tilde{R}+R_{s}\right)\right]\right\}
\end{aligned}
$$

(b)

Problem 2 (2.5 points)

(a: 1 point) Consider the opamp to have infinite input and zero output resistance, but finite forward open loop gain A so that $V_{o}=A\left(V_{+}-V_{-}\right)$

(a1: $1 / 2$ points) Calculate the closed loop gain $\mathrm{Vo} / \mathrm{Vi}$
(a2:: $1 / 2$ points) Calculate the limit of $\mathrm{Vo} / \mathrm{Vi}$ for an ideal opamp with $\mathrm{A} \rightarrow+\infty$
(b: 1.5 points) Consider the opamp to be ideal with infinite input and zero output resistance, and infinite forward open loop gain $(\mathrm{A}=+\infty)$ so that $\mathrm{V}+=\mathrm{V}$ -

(b1: $1 / 2$ points) Calculate the potential at point S
(b2: 1 point) Calculate the closed loop gain $\mathrm{Vo} / \mathrm{Vi}$

Solution-problem-2
(a)

Negartive feedbach

$$
\begin{align*}
& V_{0}=A\left(V_{+}-V_{-}\right)=-A V_{-} \tag{1}\\
& V_{-}=V_{i} \frac{R_{2}}{R_{1}+R_{2}}+V_{0} \frac{R_{1}}{R_{1}+R_{2}} \tag{2}
\end{align*}
$$

$$
(1) \Rightarrow V_{-}=-V_{0} / A
$$

$$
\begin{equation*}
(2) \Rightarrow V_{0}\left(1+A \frac{R_{1}}{R_{1}+R_{2}}\right)=-V_{i} \frac{R_{2}}{R_{1}+R_{2}} A \tag{3}
\end{equation*}
$$

(a1) $V_{0} / V_{i}=-\frac{R_{2}}{R_{1}+R_{2}} A /\left(1+A \frac{R_{1}}{R_{1}+R_{2}}\right)$
(a2) $\mathrm{V}_{0} / V_{i}=-\frac{R_{2}}{R_{1}}$
(b)

$$
V_{t}=V_{-}=0
$$

R_{5}, R_{4}, R_{2} are parallel is we define $\tilde{R}=R_{2}\left\|R_{4}\right\| R_{5}$, then using aroltage divider between \tilde{R} and R_{3} we have

$$
V_{s}=V_{0} \cdot \frac{\tilde{R}}{\tilde{R}+R_{3}} \quad\left(b_{1}\right)
$$

The same current flows in R_{2} and R_{2}

$$
\begin{aligned}
& \text { So we have } \frac{V_{i}-0}{R_{1}}=\frac{0-V_{s}}{R_{2}}=0 \\
& \frac{V_{1}}{R_{1}}=-\frac{V_{5}}{R_{2}}=-\frac{\tilde{R}}{R_{2}} \cdot \frac{1}{R_{3}+\tilde{R}} \cdot V_{0}=0 \\
& \frac{V_{0}}{V_{1}}=-\frac{\left(R_{3}+\tilde{R}\right) R_{2}}{\tilde{R} R_{1}} \quad\left(b_{2}\right)
\end{aligned}
$$

Problem 3 (1.5 points)

Consider the oscillating circuit (Wien Oscillator) with $\mathrm{V}_{+}=\mathrm{V}$ -

(a: $\mathbf{1 / 2}$ points) Calculate the transfer $\mathrm{A}=\mathrm{V}(3) / \mathrm{V}(1)$
(b: $\mathbf{1} / \mathbf{2}$ points) Calculate the transfer $B=V(5) / V(3)$. For what value of $\omega \mathrm{RC}$ is B real?
(c: $\mathbf{1 / 2}$ points) For what value of R_{1} / R_{2} is $A B=1$? Note that now $\mathrm{V}(5)=\mathrm{V}(1)$.

Solution-problem-3

(a) $\mathrm{V}+=\mathrm{V} 1, \mathrm{~V}-=\mathrm{V} 3\{\mathrm{R} 2 /[\mathrm{R} 2+\mathrm{R} 1]\}$ (voltage divider)
$\mathrm{V}+=\mathrm{V}-\rightarrow \mathrm{V} 1=\mathrm{V} 3\{\mathrm{R} 2 / \mathrm{R} 2+\mathrm{R} 1\} \rightarrow \mathrm{A}=\mathrm{V} 3 / \mathrm{V} 1=1+(\mathrm{R} 1 / \mathrm{R} 2)$
(b) In the more general case we have:

For $\omega=1 / R C \quad B=V 5 / v 3$ is real $\rightarrow B=1 / 3$
(c) $\mathrm{AB}=1$, since $\mathrm{B}=1 / 3 \rightarrow \mathrm{~A}=3 \rightarrow \mathrm{R} 1 / \mathrm{R} 2=2$

Under these condition we have formed the Wien Oscillator

Problem 4 (1.5 points)

(a: $\mathbf{1 / 2}$ point) The diodes D1 and D2 are ideal with forward conduction voltage $\mathrm{Vc}=0.7 \mathrm{~V}$. Explain briefly which diode conducts current, and justify your answer. Consider $\mathrm{V}_{1}=4 \mathrm{~V}, \mathrm{~V}_{2}=9 \mathrm{~V}$, and $\mathrm{Vs}=2 \mathrm{~V}$
(b: $\mathbf{1 / 2}$ point) Calculate the current via the resistor R .
(c: $\mathbf{1 / 2}$ points) How much power is consumed on the diode that conducts current?

Solution-problem-4

(a)

For diode D1 we have $4-2=2>V$ c, so in principle it can conduct current For diode D2 we have $9-2=7>\mathrm{Vc}$, so in principle it can conduct current.

When D 2 is conducting then the potential at the point O is $\mathrm{Vo}=9-\mathrm{Vc}=8.3>$ 4 Volts. Therefore, the diode D1 will not conduct, and only D2 is conducting!
(b) $\mathrm{I}=(\mathrm{Vo}-\mathrm{Vs}) / \mathrm{R}=[(\mathrm{V} 2-\mathrm{Vc})-\mathrm{Vs}] / \mathrm{R}=6.3 / \mathrm{R}$
(c) $\mathrm{P}_{\mathrm{D}} 2=\mathrm{I} \cdot \mathrm{Vc}=(6.3 \mathrm{Vc}) / \mathrm{R}=4.41 / \mathrm{R}$

Problem 5 (1.5 points)

Design a synchronous 4-counter using J-K flip-flops that counts through the states $1,2,3,4$:

Q_{n-1}	Q_{n}	J	K
0	0	0	$*$
0	1	1	$*$
1	0	$*$	1
1	1	$*$	0

J	K	Q_{n}
0	0	Q_{n-1}
0	1	0
1	0	1
1	1	$\overline{Q_{n-1}}$

*: don't care

Solution-problem-5

		Q_{3}	Q_{2}	Q_{1}	Q_{3}	Q_{2}	Q_{1}	y_{3}	k_{2}	y_{2}	\mathbb{I}_{2}	y_{1}	\mathbb{Z}_{1}
1	0	0	1	0	1	0	0	x	1	x	x	1	
2	0	1	0	0	1	1	0	x	x	0	1	x	
3	0	1	1	1	0	0	1	x	x	1	x	1	
4	1	0	0	0	0	1	x	1	0	x	1	x	

$\mathrm{J} 2=\mathrm{K} 2=\mathrm{Q} 1, \mathrm{~J} 3=\mathrm{Q} 2 \mathrm{Q} 1$ and $\mathrm{K} 3=1 \quad \mathrm{~J} 1=\mathrm{K} 1=1$

Problem 6 (1.5 points)

Consider a FET as shown bellow:

Show that the amplification ratio v_{o} / v_{i} of the small voltage variation at the input/output is given by:

$$
\frac{v_{o}}{v_{i}}=\frac{g_{m} R_{s}}{1+g_{m} R_{S}+\left[\left(R_{D L}+R_{S}\right) / r_{d}\right]}, \quad R_{D L}=R_{D} / / R_{L}
$$

with g_{m} the transconductance, and r_{d} the differential resistance of the FET operating at saturation.

Solution-problem-6
small signal circuit

Ri

$$
\begin{aligned}
& \text { (1) } U_{0}=U_{s}=i_{d} R_{s}, \quad i_{b}=g_{m} U_{g s}+\frac{U_{d}-V_{s}}{r_{d}} \text { (2) } \\
& i_{b}=-\frac{U_{d}}{R_{D}}=\frac{U_{s}}{R_{s}}=P \quad U_{d}=-\frac{R_{D}}{R_{s}} U_{s}(3) \\
& (1) f(2) f(3)=\varnothing \\
& U_{s}=R_{s}\left[g_{m} U_{g}-g_{m} U_{s}-\frac{1+\frac{R_{D}}{R_{s}}}{r_{d}} U_{s}\right] \\
& =P \quad U_{s}\left[1+g_{m} R_{s}+\frac{R_{D}+R_{s}}{r_{d}}\right]=g_{m} R_{s} U_{g} \\
& U_{s} \equiv U_{0}, \quad U_{i}=U_{0}
\end{aligned}
$$

So we obtain

$$
\frac{U_{0}}{U_{i}}=\frac{g_{m} R_{S}}{1+R_{s} g_{m}+\frac{R_{0}+R_{s}}{r_{d}}}
$$

Since RD are RL are parallel when you make the small signal circuit then just replace $\mathrm{RD}_{\mathrm{D}} \rightarrow$ RDL and you have the solution you need

$$
\frac{v_{o}}{v_{i}}=\frac{g_{m} R_{s}}{1+g_{m} R_{S}+\left[\left(R_{D L}+R_{S}\right) / r_{d}\right]}, \quad R_{D L}=R_{D} / / R_{L}
$$

Alternative solution only for the absolute top tough cookie students
Or you do it or you do not do it in this way!
(i) $V_{D}=V_{D D}-\tilde{I}_{D} \cdot R_{D} \quad, \quad \tilde{I}_{D}=I_{D}+I_{L}$
(2) $V_{D}+U_{D}=V_{D D}-\tilde{I}_{D}^{\prime} \cdot R_{D} \quad \tilde{I}_{D}^{\prime}=\left(I_{D}+i d\right)+\left(I_{L}+i_{L}\right)$

$$
\begin{align*}
(2)-(1) \Rightarrow \quad U_{d} & =-\left(i_{d}+i_{L}\right) \cdot R_{D} \tag{3}\\
V_{D} & =I_{L} \cdot R_{L} f \quad V_{D}+U_{d}=\left(i_{i}+I_{L}\right) R_{L}=D \\
U_{d} & =i_{L} \cdot R_{L} \Rightarrow \\
i_{i} & =\frac{U_{d}}{R_{L}}(4), \quad i_{d}=g_{m} U_{g S}+\frac{U_{d}-U_{S}}{Q_{d}}(s)
\end{align*}
$$

$$
\begin{align*}
& (4)+(5) \text { in }(3) \Rightarrow \\
& U_{d}=-\left[g_{m} U_{g S}+\frac{U_{d}-U_{S}}{r_{d}}\right] R_{D}-U_{d} \frac{R_{D}}{R_{i}}(6) \tag{6}\\
& \frac{U_{d}}{R_{D L}} R_{D}=-R_{0} g_{m} U_{g S}-\frac{V_{d}-U_{S}}{r_{d}} R_{D} \quad \frac{1}{R_{D}}=\frac{1}{R_{D}}+\frac{1}{R_{L}} \\
& \frac{U_{d}}{R_{D L}}=-g_{m} U_{g S}-\frac{U_{d}-U_{S}}{r_{d}}(1)
\end{align*}
$$

